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Abstract 

 

 It is often not appreciated that forecast ensembles are generally skewed.  The skew can 

arise from the state-dependence of the chaotic system dynamics responsible for the ensemble 

spread. Generation of skew by this mechanism can be demonstrated in even the simplest dynamical 

system with state-dependent noise, and even when the initial and the asymptotic (that is, the 

“climatological”) forecast distributions are both symmetric. Indeed, forecast distributions of 

systems with state-dependent noise in the dynamical tendencies must in general be both skewed 

and heavy-tailed, with implications for forecasting extreme anomaly risks.  Ensemble forecast 

systems that misrepresent such state-dependent noise have state-dependent errors in their forecast 

probability distributions. Because such errors depend on both the initial condition and forecast lead 

time, they cannot be removed by simple a posteriori bias-corrections of the forecast distributions. 

 The ensemble standard deviation is often used as a simple metric of ensemble spread even 

when the forecast distribution is not Gaussian. In a similar spirit, the ensemble skew S may be used 

as a simple metric of the difference D between the ensemble-mean and most likely forecast as well 

as the risk ratio R of extreme positive and negative deviations from the ensemble-mean forecast.   

This is motivated by the facts that 1) the probability distributions of many geophysical quantities 

are approximately Stochastically Generated Skewed (SGS) distributions, for which simple 

analytical relationships exist between these quantities, and 2) Gaussian distributions are a sub-

class of SGS distributions. However, S may serve as a useful metric of R and D even when the 

distributions are not strictly SGS distributions. 
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1. Introduction 

 A basic feature of weather and climate predictions is their sensitivity to small initial errors.  

The chaotic nature of earth system dynamics renders accurate deterministic predictions impossible 

even if the initial errors are tiny.  

 Operational weather forecasting centers commonly account for forecast uncertainty by 

providing an ensemble of forecasts generated from an ensemble of slightly different initial 

conditions, and more recently at some centers, also by stochastically perturbating the forecast 

model’s tendencies at each model time step.  It is clear that both initial uncertainties and model 

uncertainties contribute to forecast uncertainty, and both need to be accounted for to give the best 

probabilistic forecasts.  

Current ensemble forecasting methods yield a crude probability distribution of possible 

future states, with the ensemble-mean forecast often interpreted as the most likely future state, and 

the ensemble spread as the forecast uncertainty.  For the ensemble to be “reliable” in a probabilistic 

sense, the actual future state must generally occur within the ensemble spread, that is, the actual 

forecast uncertainty must be consistent with the expected forecast uncertainty. One measure of this 

reliability is the consistency between the root-mean-square error of the ensemble-mean forecast 

determined over many forecast cases and the root-mean-square of the ensemble spread, also 

determined over many cases. A longstanding problem with most ensemble forecasting systems is 

that the ensemble spread is generally smaller than the error of the ensemble-mean forecast, that is, 

the expected forecast uncertainty is too small. This has consequences, especially for predicting 

extreme event risks. 

There are large ongoing efforts in the numerical modeling community to reconcile the 

forecast error and spread, both by reducing the error and increasing the spread (e.g., Bechtold et al 
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2008, Leutbecher et al 2017). Efforts to reduce forecast error generally focus on improving the 

representation of physical processes and increasing the spatial resolution of the forecast model.  

Efforts to increase forecast spread have traditionally focused on using an ensemble of perturbed 

initial conditions centered on a more accurately estimated “control” initial condition with special 

perturbations that grow most rapidly, obtained as either singular vectors or “bred” vectors of the 

perturbation evolution operator (Molteni et al 1996; Toth and Kalnay 1997).  An alternative 

approach is to use an ensemble of initial states consistent with observational uncertainty, generated 

using an ensemble data-assimilation algorithm such as an Ensemble Kalman Filter (Evensen 

1994). Neither approach has proven effective in eliminating the gap between the forecast error and 

spread growth with forecast lead time.  More recently, some promising results have been obtained 

by stochastically perturbing the physics and dynamics of the forecast model itself throughout the 

forecast (Palmer et al 2009, Berner et al 2009, Leutbecher at al 2017, Palmer 2019).  Forecast 

improvements due to such “stochastic parameterizations” are also generally consistent with those 

obtained by increasing model resolution (Berner et al. 2012, 2017). 

 Stochastic perturbations are usually justified as accounting for chaotic feedbacks from 

unresolved model physics and dynamics that are not represented by deterministic 

parameterizations. Nonlinear interactions, including “deterministic’ interactions, that occur on 

multiple timescales are often described well by a stochastic dynamic “forcing” even when they are 

generated internally.  For example, individual molecular collisions act as state-dependent noise in 

macroscopic fluid dynamics (Landau and Lifshitz 1959; see García and Penland 1991 for 

numerical verification). The existence of chaotic interactions at all scales in the geophysical system 

ensures that stochasticity from various sources is an important contributor to variability in weather 

and climate.  The rich literature showing this to be true has been explored in texts edited by, e.g., 
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Imkeller and Von Storch (2001) and Palmer and Williams (2010), as well as in classic studies such 

as that of Hasselmann (1976). The discussion in Gottwald (2021) is particularly interesting for its 

practical advice on how to ensure consistency with pertinent limit theorems in implementing 

dynamically-based stochastic parameterizations.  

 Accurate forecasting requires accurate representation of both the resolved aspects of the 

physical system and the interactions between resolved and unresolved processes.  Simply throwing 

in random numbers to increase the ensemble spread with no regard for the particular physical 

processes they represent must have limited advantage, although even this is apparently effective 

in improving estimates of forecast uncertainty (Buizza et al 1999). 

 Meaningful representation of stochastic effects in a multiscale system must also account 

for the degree of timescale separation between resolved and unresolved processes. If their 

separation, defined as the ratio of their autocorrelation timescales, is “infinite”, the stochastic 

effects may be represented rigorously as a forcing of the resolved scales by a Gaussian white noise 

forcing with vanishing temporal autocorrelation scales (e.g., Khas’minskii 1966; Papanicolaou and 

Kohler 1974; Hasselmann 1976).  If the separation is large but finite, one may employ a noise 

forcing with “memory”, such as a Gaussian Ornstein-Uhlenbeck (red noise) forcing with small but 

finite temporal autocorrelation scales. If the separation does not allow for a complete decoupling 

of resolved and unresolved timescales, such as when the amplitude of the unresolved processes 

depends on the amplitude of the resolved processes, one may represent the unresolved chaotic 

feedbacks on the resolved scales as a state-dependent stochastic forcing.  In the simplest case of 

an energy-conserving system with slow (“resolved”) and fast (“unresolved”) system components, 

one can rigorously show that such a stochastic coupling yields a Stochastically Generated Skewed 

(SGS) probability distribution of the slow variables (Sardeshmukh and Penland 2015), which in 
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the limit of zero coupling reduces to a Gaussian distribution.  Unfortunately, this is where 

analytical tractability of a smooth transition from a white noise stochastic forcing to a more 

complex stochastic forcing ends.  At the next level of complexity, the chaotic nonlinear resolved-

unresolved interactions generally cannot be treated as a linear stochastic process, and the particular 

forms of the nonlinear terms in a forecast model’s equations become important. 

 Our purpose here is to highlight the fact that forecast ensembles in systems with state-

dependent noise are generally skewed, and that the ensemble standard deviation alone does not 

provide a reliable quantification of forecast uncertainty. The skew strongly affects forecasts of 

extreme anomaly risks, but is rarely discussed in the forecasting literature (see e.g., overview 

articles by Leutbecher and Palmer 2008, Palmer 2012, Gneiting and Katzfuss 2014, Leutbecher et 

al 2017). We stress that the skew due to state-dependent noise is a fundamental property of multi-

scale systems with slow and fast components (Sardeshmukh and Penland 2015), and should be 

distinguished from the skew generated in forecast ensembles by errors in initial conditions and in 

the deterministic forecast dynamics, such as errors in propagating waves and fronts (e.g. Miller 

and Ehret 2002, Miyazawa et al 2005, Hodyss and Reineke 2013, Schulte and Georgas 2018). 

We investigate the conditional (that is, the forecast ensemble) skew rigorously in the 

simplest dynamical system with state-dependent noise, specifically a linear scalar system with 

SGS dynamics, assuming that its sensitivity to initial conditions and forecast lead times will also 

be illustrative of more complex systems. We do of course recognize that skewness in forecast 

ensembles can also be generated by deterministic nonlinear processes, not just by state-dependent 

stochastic processes, and errors in modeling deterministic nonlinear processes as well as 

observational errors might present additional sources of skew.  However, even eliminating such 

errors would not eliminate the skew in forecast ensembles generated by state-dependent stochastic 
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processes, and we focus on this unavoidable, dynamically-based skew in a simple setting.  Further, 

Sardeshmukh et al (2015) and Sardeshmukh and Sura (2009) provide strong evidence that state-

dependent stochastic noise accounts for some basic features of observed large-scale atmospheric 

non-Gaussianity that are otherwise hard to explain. For example, Sardeshmukh et al. (2015, see 

their Figs. 2 and 3) used the long-term Twentieth Century Reanalysis dataset to show that for 

several important meteorological variables, the skew of their probability distributions, the 

distinctive relationship between the skew and kurtosis, and the approximate equality of their 

probability densities at standardized positive and negative anomaly magnitudes of 3 are all 

consistent with state-dependent stochastic noise.  SGS dynamics may therefore be considered an 

important generation mechanism for atmospheric non-Gaussianity. 

 In general, the conditional skew S is associated with a difference D between the ensemble-

mean forecast (that is, the mean of the forecast distribution for any desired lead time) and the most 

likely forecast (the mode of the distribution for that lead time). S is also associated with the risk 

ratio R of extreme positive and negative deviations from the ensemble-mean forecast being 

different from unity. Less intuitively but no less importantly, S can also cause the rank histograms 

of ensemble forecasts determined over many forecast cases (sometimes referred to as Talagrand 

diagrams), which should ideally be flat, to have a symmetric U shape. Such histograms are often 

used to assess forecast reliability (but see Hamill 2001 for a critique). Their U-shape, an 

undesirable feature of many ensemble forecast systems, is interpreted as a general underprediction 

of extreme anomalies and is almost always ascribed to a deficiency in the ensemble spread, not in 

the ensemble skew. The numerical experiments presented here provide a perspective on how large 

such effects of S are likely to be in real forecasting contexts for them to matter. 
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 8 

 A rigorous characterization of D and R is possible when their underlying stochastic 

generator is known. Here we exploit the fact that the probability distributions of many large-scale 

meteorological variables are approximately SGS distributions (e.g., Sardeshmukh et al. 2015; 

Sardeshmukh and Sura 2009). Such distributions are generated by a combination of correlated 

additive (that is, the state-independent) and multiplicative (that is, the linearly state-dependent) 

noise forcing, often referred to as CAM-noise forcing.  To distinguish the impact of the stochastic 

forcing on the forecast spread from that of initial uncertainty, we focus on situations in which the 

initial conditions are perfect, i.e., -functions. Note that the SGS process, being linear, may 

superpose an ensemble of -function initial conditions to describe the results of the whole. 

Note also that our focus here is on the skew of the forecast pdf, not on the nonlinear 

evolution of the ensemble-mean forecast per se. The ensemble spread and skew are, almost by 

definition, due to chaotic system dynamics. Our approach of approximating the chaotic dynamics 

as state-dependent stochastic noise in the simplest model consistent with observed non-Gaussian 

atmospheric statistics is consistent with the representation of nonlinear chaotic physics by “SPPT” 

types of stochastic noise parameterizations employed in several state-of-the-art NWP models, and 

indeed we have found in ongoing research (Sardeshmukh et al 2022, manuscript in preparation) 

that even our scalar model is useful for understanding the impact of such stochastic 

parameterizations on forecast skill in the NOAA/GFS model (Wang et al 2019).  

 We also recognize that there are important meteorological variables whose distributions 

are not SGS distributions.  Because SGS distributions fit the data much better than Gaussian 

distributions (Sardeshmukh et al 2015),  we submit that the skew S of a forecast ensemble is a 

useful metric of both D and R even when the distributions are only approximately SGS 

distributions, given the simple relationships between S, D, and R in CAM-noise driven systems. 
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We submit this noting that the standard deviation of a forecast ensemble is a useful metric of 

forecast uncertainty even when the distribution is not Gaussian. 

 The article is arranged as follows. We review the SGS distribution in section 2, 

summarizing the connection of its parent stochastic differential equation to a nonlinear 

stochastically forced oscillator, recalling the properties of the unconditional (that is, the stationary) 

distribution, and revisiting evidence that many important large-scale meteorological variables 

obey the SGS distribution.  In section 3, we note that the conditional (that is, the forecast) 

probability distribution associated with the stochastic dynamical system obeys the same Fokker-

Planck equation obeyed by the stationary distribution, and use it to derive its first four moments 

for a single initial condition.  We numerically generate a large ensemble of realizations of the 

dynamical system with this initial condition and different realizations of the stochastic noise during 

system integration. We then repeat these numerical integrations with other initial conditions.  The 

ensemble members from all such integrations are then used to analyze the forecast probabilities as 

a function of initial condition and forecast lead time.  The results presented in sections 3 are based 

on very large 50000-member ensemble integrations of this simple system, performed to check both 

numerical accuracy and consistency with theoretical expectations. We also investigate the 

sampling uncertainties that arise if much smaller but more realistic (100 or 200 member) 

ensembles sizes are used. Section 4 provides a summary and concluding remarks.  

 

2. Review of SGS dynamics  

 The SGS distribution was introduced (Sardeshmukh and Sura 2009) as a way to reconcile 

the observed non-Gaussianity of weather and climate variations with their approximately linear 

predictability and linear response to external forcing. The linear predictability is evident in many 
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contexts, such as the predictability of tropical SSTs (e.g., Penland and Sardeshmukh 1995, 

hereafter PS95; Newman and Sardeshmukh 2017). Using Linear Inverse Modeling (LIM) to 

estimate the SST evolution operator from observed lag-covariances, PS95 found that the results 

did not seem to depend on the training lag used for the estimation (see also Shin et al 2010). That 

is, their so-called “tau-test” for linearity was passed.  Such a result indicates linear dynamics, 

almost by definition.  However, although seasonally-averaged SSTs are close to Gaussian, monthly 

averaged SSTs are distributed with significant skew (e.g., Martinez-Villalobos et al 2019), which 

appears to require nonlinear dynamics.  These apparently opposite conclusions regarding linearity 

can be reconciled if a linear process is driven by correlated additive and multiplicative stochastic 

noise (CAM noise), which occurs naturally in even very simple multivariate nonlinear systems 

with slow and fast variables such as a two-dimensional nonlinear oscillator (Sardeshmukh and 

Penland 2015).  The resulting equation for the slow process x(t), adjusted to have zero-mean, is 

𝑑𝑥 1
= 𝐿𝑥 + (𝐸𝑥 + 𝑔)𝜉1 + 𝑏𝜉2 − 𝐸𝑔.     (1) 

𝑑𝑡 2

In Eq. (1), 𝜉1 and 𝜉2 are independent Gaussian white noises (to be integrated in the sense of 

Stratonovich), while L, E, g, and b are constants.  The stationary, that is the climatological, 

probability density function (pdf: p(x)) is evaluated from the stationary Fokker-Planck equation 

(see Appendix A) as 

1 𝐸𝑥+𝑔
𝑝(𝑥) =  [(𝐸𝑥 + 𝑔)2 + 𝑏2]−(𝜈+1)exp [𝑞 arctan ( )] ,   (2) 

𝑁 𝑏

2
where  = −  (L / E ) +  , q = 2g  b, and N is the normalization constant.  Note that   is 

th
constrained to be strictly positive for p(x) to exist, and a necessary condition for the n  moment 

n
<x > to exist is that    (n – 1).  Further, since the arctangent is bounded and constant for large 

|x|, p(x) has power law tails, with the pdf varying as x−(+) for large |x|. 
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 The multiplicative noise  𝐸𝑥𝜉1 and additive noise 𝑔𝜉1 + 𝑏𝜉2 are uncorrelated if g = 0. 

However, when the physical processes represented by these noises are correlated, g ≠ 0, and cause 

the stationary pdf to be skewed, basically because the magnitude of Ex+ g is different for positive 

and negative x. The stationary mean of x is zero by construction, but the peak of the probability 

distribution, the mode, is at xp = E g/(L−E).  In fact, since the deterministic parameter L can be 

absorbed in , it is possible to factor L completely out of Eq. (2), and thus out of the location of 

the mode of the stationary pdf, by rescaling E, g, and b by the decay rate  of the lagged 

autocorrelation of x (see Eq. A4, and Sardeshmukh et al. 2015). 

 There are other specific properties of p(x) and relationships between moments when g ≠ 0, 

which have been used in previous publications (Sardeshmukh and Sura 2009; Sardeshmukh et al. 

2015) as strong evidence that the unconditional (that is, the climatological) probability 

distributions of daily anomalies of important meteorological variables are approximately SGS 

distributions.  Sardeshmukh and Sura (2009) justified the relevance of the SGS distribution 

associated with a univariate CAM-noise process Eq. (1) in the obviously multivariate real 

atmospheric system by invoking a principle of “diagonal dominance” in the equations for the 

higher statistical moments (such as skew, kurtosis, and higher moments) in multivariate linear 

systems. More rigorously, Sardeshmukh and Penland (2022, manuscript in progress) have recently 

shown the SGS distribution to be the unconditional distribution of any single component, or any 

linear combination of components, of a multivariate linear system governed by a vector form of 

Eq. (1) with multivariate CAM noise forcing.   

In this paper we are not so concerned with the unconditional as with the conditional 

distribution.  In a forecasting context, by conditional distribution we mean a distribution 

conditioned on an initial condition, that one would obtain if the initial condition were perfect or 
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very nearly perfect. Such a distribution would have a finite spread at any forecast lead time because 

of the chaotic system dynamics. To highlight the general skewness of such conditional 

distributions, we consider ensemble forecasts from perfect initial conditions in a simple system in 

which g = 0 in the generating equation and the climatological pdf is symmetric.  As we shall see, 

the multiplicative noise interacts with any nonzero initial condition in even such a system to 

generate a conditional skew that reaches a maximum and then decays to zero with forecast lead 

time. 

 

3. Conditional SGS 

 Conditional pdfs obey the same Fokker-Planck equation that stationary pdfs do, except 

their time derivative in the equation is not zero.  Also, in general the normalization constant in the 

formula for the conditional pdf is time-dependent.  This is a serious complication in deriving 

analytical expressions for conditional pdfs in CAM-noise driven systems, and indeed we have not 

derived them. We have, however, derived analytical expressions for their statistical moments in 

Appendix A.  As shown below, our numerical results match these analytical expressions within 

sampling uncertainty, and the pdfs themselves also appear to be SGS pdfs, albeit with parameters 

conditioned on the initial condition.   

 To demonstrate the general skewness of conditional pdfs in even the simplest multiplicative 

noise driven systems, we numerically generated ensembles of a version of Eq. (1) with g = 0.  The 

other parameters were chosen so that the resulting time series x(t) had unit variance and its 

autocorrelation function decayed exponentially with decay rate  = 1. Henceforth, all values of x 

are presented in units of the climatological standard deviation, and time in units of the decay time 

 1/.  Specific values of the parameters are L = −, E =  and b =  Each member of 
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an ensemble was integrated from the same initial condition x, i.e., p(x, t = 0) = (x− x). The 

different members resulted from differed seeds provided to the random number generator returning 

different time series of  𝜉1 and 𝜉2. 

 An ensemble of 50000 members was generated for each initial condition.  Each member 

was integrated using a stochastic fourth-order Runge-Kutta (RK4) scheme (Rümelin 1982).  A 

Mersenne Twister was used to provide random deviates from a uniform distribution, which were 

then converted to Gaussian deviates using a Box-Müller scheme.  The RK4 scheme has been 

shown to give results consistent with a Stratonovich Mil’steyn scheme (e.g., Kloeden and Platen 

1992), and the two schemes have the same formal order of accuracy. Nonetheless, we chose to use 

the RK4 scheme since it is favored by many scientists. 

 The number of ensemble members (50000) is much larger than can be reasonably expected 

of either operational or most research ensemble calculations.  We chose such a large ensemble size 

for our control ensemble to verify our analytical results without seriously having to consider 

sampling uncertainty.  Of course, sampling uncertainty is an important issue in real forecasts. We 

investigated it by subdividing our 50000-member ensemble into 500 100-member and 250 200-

member ensembles and recomputing the results using these smaller and more reasonable 

ensembles sizes. 

 We monitored the forecast ensemble histograms for integrations from initial conditions x 

=   and   Results for the control ensemble using  x =  are shown in Fig. 1a at forecast lead 

times   =   and , starting from the delta function at x.  For reference, we also show the 

Gaussian histograms (Fig. 1b) obtained from similar ensemble integrations of an Ornstein-

Uhlenbeck process, i.e.  with both E and g set equal to 0 in Eq. (1) and with L and b adjusted to 

give unit variance and unit decay time.  All histograms were smoothed with a 5-point smoother.  
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Figure 1 shows that in both the SGS and Gaussian cases the delta-function initial condition evolves 

into a symmetric stationary pdf at long lead times.  Note that the mean of the conditional pdf (that 

is, the ensemble-mean forecast) is the same in the two cases at all forecast lead times.  However, 

unlike the Gaussian case, the conditional pdfs in the SGS case are skewed and heavy-tailed, and 

for this initial condition, wider than even the stationary pdf ! 

 As shown in Appendix A, the conditional moments can be evaluated using an equation 

such as Eq.(A6) derived from the Fokker-Planck equation.  Solving this equation analytically for 

the conditional first, second, third, and fourth moments allows evaluation of the conditional 

variance, skew, and excess kurtosis which can then be compared with the corresponding quantities 

estimated directly from the forecast ensembles. (Note that unlike the stationary moments, 

analytical evaluation of these conditional moments does require knowledge of the decay rate, 

which in our examples is unity).   This comparison is shown in Fig. 2 for the control ensemble as 

a function of forecast lead time   for the three initial conditions x.  To assess the robustness of 

the numerical results with respect to sampling uncertainty, which can be an issue in estimating 

higher moments, we also show the analytical and empirical skew and excess kurtosis obtained in 

the control ensemble integrations from negative mirror initial conditions, x = − − and -.  The 

numerical conditional skew curves for the positive and negative initial conditions are nearly mirror 

images of one another, as expected, and in excellent agreement with the analytical curves. The 

agreement of the conditional excess kurtosis curves is however not as good, even using such a 

large ensemble.  Note that in all cases the maximum skew occurs fairly early in the forecasts, at 

lead times   between 0.7 and 1.0 decay times. 

 In the following, we will introduce approximations that rely more on the skew than the 

excess kurtosis since the skew is more accurately estimated than the kurtosis.  In fact, the sample 
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histograms of all conditional moments, including variance, from the 250 sets of 200-member 

ensembles and from the 500 sets of 100-member ensembles are themselves visibly skewed, and 

this skew increases with the order of the moment.  For this reason, we show median values as well 

as the 10% confidence levels of the conditional skew as estimated from sets of 100-member and 

200-member ensembles in Fig. 3. That is, 90% (450 values) of the sample skews estimated from 

the 100-member ensembles lie above the dotted red line in Fig. 3. Thus, the uncertainties in sample 

skew are large, but not so large as to render the skew unusable.  Not surprisingly, estimates of 

kurtosis using even the larger 200-member ensembles are unreliable. 

 Since the conditional pdfs in a system with a stationary Gaussian pdf are Gaussian, the 

question arises whether conditional pdfs in a system with a stationary SGS pdf are also SGS pdfs.  

To address this, we used the conditional moments (variance, skew, and excess kurtosis) in our 

numerical ensembles to estimate the conditional parameters E, g, and b, assuming that they are 

related to the conditional moments in the same way as the stationary parameters are related to the 

stationary moments in Eq.(A4). Fig. 4 shows the parameters estimated from the control ensemble 

for three initial conditions, xo = 1, 3 and 5, as a function of forecast lead time  (In practice, we 

suggest fitting the conditional pdfs using a more robust technique, like the maximum likelihood 

method or a Bayesian procedure (Bianucci and Mannella 2021), than the “method of moments” 

used here).  The conditional parameters estimated from the control ensemble were then specified 

in Eq.(A2) to determine candidate conditional SGS pdfs.  Fig. 5 shows that these candidate 

conditional distributions are nearly identical to the histograms obtained from the forecast 

ensembles for the three initial conditions at unit forecast lead time. We have performed similar 

comparisons for the other lead times and find agreement between histograms and analytically-fit 

pdfs in all cases. Thus, although we have not been able to show analytically that the conditional 
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pdfs are SGS pdfs, it is clear that SGS pdfs are at least an excellent approximation to the conditional 

pdfs.  We are also encouraged to find that these distributions appear to depend only weakly on the 

kurtosis, since the kurtosis is generally poorly sampled (Fig. 2d).   

 The generation of skew in the forecast ensemble by multiplicative noise results in a 

difference D between the mean and mode of the conditional pdfs.  This difference, that we call the 

forecast distributional bias, is related to the skew S and the multiplicative noise parameter E of the 

conditional pdf as 

𝜎 𝐸2 𝜎
 𝐷 =  𝑥 − 𝑥  =   

𝑓 𝜆−
( ) 𝑆  ≈  

𝑓 𝑛−3
𝑚𝑒𝑎𝑛 𝑚𝑜𝑑𝑒 ( ) 𝑆,                    (3) 

2 𝜆+𝐸2 2 𝑛+1

where f is the standard deviation of the conditional pdf, and the last approximation follows from 

assuming that 𝐸2 ≈ 2𝜆⁄(𝑛 − 1)  if the highest moment of (𝑥 − 𝑥𝑚𝑒𝑎𝑛)  that exists is  

〈(𝑥 − 𝑥𝑚𝑒𝑎𝑛)𝑛〉.  Fig. 6 shows D estimated from the 100- and 200-member ensembles, but 

assuming an accurate estimation of E2, in units of the stationary standard deviation   to facilitate 

intercomparison among the different forecast cases. Like the conditional moments, the distribution 

of sampled D is skewed.  Dotted lines indicate the 10% confidence level, meaning that 90% of the 

sample D values lie above these curves. Also shown are values of D using parameters estimated 

from the theoretical moments derived in Appendix A.  For all three initial conditions x  D peaks 

at lags of about   = 0.6 but remains large for longer lead times ot surprisingly, D is largest for 

forecasts from x = , since the multiplicative noise is relatively largest in that case, but D generally 

cannot be ignored even in the case of the much less extreme initial condition  x = ; the median 

(50% confidence level) values of D are close to the theoretically estimated values. 

 The skew of the forecast ensemble also affects the predicted risk ratio R of extreme positive 

and negative deviations from the ensemble-mean forecast. For simplicity, we define these 
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extremes as +2 standard deviations from the ensemble-mean forecast.  That is, for 𝑥  =

(𝑥 − 𝑥𝑚𝑒𝑎𝑛)⁄𝜎𝑓,  where xmean   and f are the mean and standard deviation of the conditional pdf, 

respectively, we define 𝑅 = 𝑝(𝑥 = +2)/𝑝(𝑥̃ = −2) . Fig. 7 shows R as a function of forecast lead 

time for the three initial conditions x using Eq. 2 and parameters estimated from the control 

ensemble with 50000 members (black circles; see Fig. 5). Note that in the Gaussian (Ornstein-

Uhlenbeck) case, R = 1 at all lead times. In the SGS case, R is clearly not equal to 1, and for small 

S, is related approximately to S as 

𝑥̃ (𝑥̃2−3) 2
   𝑅 ≈ 𝑒𝑥𝑝 [𝑆 ] = 𝑒𝑥𝑝 [ 𝑆]  .                              (4)  

3 3

We tested this simple approximation to R using our 100- and 200-member ensembles.  Fig. 7 

shows that the approximation appears to be valid for conditionals skews smaller than about 0.5.  

As with the conditional moments and D, the distributions of R estimated from our ensemble sets 

are skewed. In all cases, the values of R estimated from the pdfs shown in Fig. 5 are well within 

the range of ensemble values. 

 

5. Discussion and Concluding Remarks 

We have argued that forecast ensembles in the climate system must be generally skewed, in part 

because the chaotic system dynamics responsible for the ensemble spread are generally state 

dependent.  We showed that forecast ensembles are skewed even in the simplest scalar linear 

dynamical system with state-dependent noise, and even when the initial and the long-lag 

(“climatological”) ensembles are not skewed. The ensemble skew S is related to two other 

important aspects of ensemble asymmetry: the difference D between the expected mean and most 

likely forecast, and the risk ratio R of extreme positive and negative deviations from the ensemble-

mean forecast.  In our simple system, which has relevance in weather and climate dynamics (e.g., 
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Sardeshmukh et al. 2015), these relationships can be made explicit. This motivates us to propose 

S as a generally useful metric of ensemble forecast information, in addition to the ensemble mean 

and spread.  

 State-dependent (multiplicative) and state-independent (additive) noises can both increase 

forecast spread. Unlike additive noise, however, multiplicative noise can make the spread even 

larger than the climatological standard deviation and generate skewed and heavy tailed forecast 

distributions. These effects can cause predictions of extreme anomaly risks to strongly differ from 

similar forecasts based on Gaussian statistics.  

 In our illustrative examples, the multiplicative noise effects on the forecast pdfs peaked at 

forecast lead times     and were relatively large when the initial anomaly was large (x = ).  

The basic reason for this is not hard to understand. When the initial anomaly is large, the 

multiplicative noise is also relatively large, and can push the system to even larger values than 

additive noise.  The effect becomes smaller after     in all forecast cases as the ensemble drifts 

towards climatology and  x becomes smaller.  

Analysis of a multivariate CAM-noise system (Sardeshmukh and Penland 2022, 

manuscript in progress) suggests that one may reasonably assume results from this simple system 

to be generally relevant even in multi-dimensional systems with state-dependent noise. Further, 

Thompson et al. (2017) have shown that homogenization of a system driven by linear CAM noise 

rigorously converges to one driven by an -stable Lévy process, whose self-similar properties of 

the pdf are well-known.  If the CAM noise process were to be far from self-similar itself, one 

would not expect it to be such a good approximation of a Lévy process as it is (Penland and 

Sardeshmukh 2012; Gottwald 2021). 
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 The fact that the largest multiplicative noise effects occur for forecasts from extreme initial 

conditions highlights the importance of properly accounting for them in predictions of extreme 

events.  We should note that in a multi-component system such extreme initial conditions need not 

be associated with extremely large-amplitude initial anomaly vectors as in our scalar 1-component 

system, but merely have a large projection on the optimal initial vectors for anomaly growth over 

the global forecast domain or a desired sub-domain. Such optimal vectors, usually identified with 

the dominant singular vectors (SVs) of the system’s perturbation evolution operator, have found 

extensive application in initial ensemble design and predictions (e.g., Buizza and Palmer 1995). 

Multiplicative noise in the evolution from an initial SV perturbation to an extreme large-amplitude 

perturbation would then generate large skew in the forecast pdfs even from small initial amplitudes 

in this vector scenario, unlike in the scalar 1-component scenario.  

 Finally, because multiplicative noise effects on forecast pdfs depend on the initial condition 

as well as forecast lead time, one cannot account for them using state-independent a-posteriori 

probabilistic bias corrections. For example, it may be tempting to correct for the undesirable 

symmetric U shapes of rank histograms in many ensemble forecasting systems through state-

independent adjustments of the ensemble spread.  However, in reality such a symmetry may also 

arise from a conflation of spuriously skewed conditional pdfs in forecasts from positive and 

negative initial conditions (see Fig 2c), as also noted by Hamill (2001). One may think of 

addressing such issues by stratifying the a-posteriori corrections with respect to initial conditions 

and forecast lead times. This is possible in principle, but impractical in high dimensional systems. 

A more practical and physically grounded approach is to attempt to represent such state-dependent 

noise effects, however crudely, in the forecast model itself through stochastic parameterizations of 

the state-dependent chaotic model tendencies. As mentioned in the introduction, such approaches 
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have already proven beneficial in operational ensemble forecasting. The analysis of this paper 

further highlights the need to continue improving such parameterizations to continue improving 

the prediction and dissemination of extreme anomaly risks.  
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Appendix A 

 
  

Given Eq. (1), the Stratonovich form of the Fokker-Planck equation for the conditional probability 

that the system is found between x and x+dx at time t when the initial condition at t=0 is xo is  

 

𝜕𝑝(𝑥,𝑡|𝑥𝑜) 𝜕 2

=  − [(𝐿 + 1 𝜕
𝐸2)𝑥𝑝(𝑥, 𝑡|𝑥𝑜)] + 1

2
{[(𝐸𝑥 + 𝑔)2 + 𝑏2]𝑝(𝑥, 𝑡|𝑥𝑜)}.  (A1) 

𝜕𝑡 𝜕𝑥 2 2 𝜕𝑥

 

This equation is also obeyed by the stationary probability density function (pdf) p(x) for x with the 

time derivative on the left-hand side set to zero.  Integrating the equation for the stationary pdf 

once over x and using the fact that p(x) vanishes as x gets infinitely large yields 

 

1 𝐸𝑥+𝑔
𝑝(𝑥) =  [(𝐸𝑥 + 𝑔)2 + 𝑏2]−(𝜈+1)exp [𝑞 arctan ( )]     (A2a) 

𝑁 𝑏

 

2
where  = − (L / E ) + , q = 2g  b, and N is a normalization constant 

  

2𝜋 Γ(2𝜈+1)
𝑁 =  (2𝑏)−(2𝜈+1) .      (A2b) 

𝐸 Γ(𝜈+1−𝑖𝑞/2)Γ(𝜈+1+𝑖𝑞/2)

 

Note that in Eq. (A2) the deterministic parameter L occurs only in terms of .  It is therefore possible 

to factor it completely out of the equation.  In Sardeshmukh et al. (2015), the parameter 

 = −(L + E) was used to rescale E, g,  and b, rendering a three-parameter version of (A2) that 
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is completely equivalent numerically.  Note that  is the rate that the autocorrelation of x decays 

and is therefore easily estimated from data. 

 Eq. (1) has been developed for an anomalous state variable so that the stationary mean <x> 

is zero.  As shown in Sardeshmukh et al (2015), the parameters E, g, and b can be estimated from 

the moments of p(x) in terms of .  Recalling the general definitions of variance , skew S, and 

excess kurtosis K: 

  = (x −  x )         (a) 

 S = (x −  x )           (3b) 

 K = (x −  x )   −          (3c) 

 

the following expressions for E, g, and b can be derived analytically and evaluated sequentially: 

 

3
2 [𝐾− 𝑆2]

 𝐸2 =  ( ) 2
2 𝜆        (A4a) 

3 [𝐾−𝑆 +2]

1− 𝐸2/𝜆
 𝑔 =  𝑆𝜎 ( ) 𝜆        (A4b) 

2𝐸

𝜆𝐸2 (1−𝜆𝐸2)2

 𝑏2 = 2𝜎2 [1 −  −  2 𝑆2] 𝜆.      (A4c) 
2 8𝜆𝐸

 

 The system considered here has a stationary pdf that is symmetric, i.e., g = 0.  We have 

shown numerically that even in this case the conditional pdf is skewed.  However, it is not clear if 

the conditional probability p(x,t|x) is strictly a Stochastically Generated Skewed (SGS) 

distribution of the form (A2).  If so, the parameters of p(x,t|x) could be estimated from expressions 

(A3) and (A4), with all of the moments in Eq. (A3), including the means and standard deviations  
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, replaced by the conditional moments.  Recall that the conditional probability p(x, t|x) obeys 

the same equation as the stationary probability p(x), retaining the time derivative.  For our system, 

that is 

 

𝜕𝑝(𝑥,𝑡|𝑥 ) 𝜕 𝜕2
𝑜 =  − [(𝐿 + 1𝐸2)𝑥𝑝(𝑥, 𝑡|𝑥 1 2 2 2

2 𝑜)] + 2
{[𝐸 𝑥 + 𝑏 ]𝑝(𝑥, 𝑡|𝑥

2 𝑜)} .  (A5) 
𝜕𝑡 𝜕𝑥 𝜕𝑥

 

The time derivative makes it more difficult to solve for p(x, t |x).  However, it is easy to derive 

th
solvable equations for the conditional moments via integration by parts.  The equation for the n  

conditional moment at time t =   given an initial condition x at t =  reads 

 

𝜕<𝑥𝑛(𝜏)|𝑥𝑜> 1
 =  𝑛 (𝐿 + 𝐸2) < 𝑥𝑛(𝜏)|𝑥𝑜 >  

𝜕𝜏 2

1
    + 𝑛(𝑛 − 1)[𝐸2 < 𝑥𝑛|𝑥𝑜 >  + 𝑏2 < 𝑥𝑛−2|𝑥𝑜 >] . (A6)  

2

 

Solving Eq. (A6) for the first four conditional moments in terms of the stationary variance , and 

using the fluctuation-dissipation relation to eliminate b, we find  

 

< x() | x > = exp [(L + E)  ] x        (A7a) 

< x() | x > = exp [ 2(L+ E) ] x
  + (1 - exp [2 (L + E) ])     (A7b) 

< x() | x > = exp [ 3(L +  E)]  x
  + 

3(𝐿+𝐸2)
      

2
(1 – exp[ 2(L+2E) ]) exp [(L + E)  ] x   (A7c) 

(𝐿+2𝐸 )

< x() | x > = exp [ 4(L + 2E) ] x
   
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(𝐿+𝐸2)
 −  2  ( − x

 ) exp[2(L+E)  ] (1 - exp[2(L+3E)  ]  
(𝐿+3𝐸 )

(𝐿+𝐸2)
 + 3

2 (1 - exp[ 4(L + 2E) ] ) .      (A7d) 
(𝐿+2𝐸 )

 

Using the conditional moments in Eqs. (A3) and (A4) to estimate the conditional parameters 

E(x,|x), g(x,|x) and b(x,|x) in terms of  one can evaluate a conditional, unnormalized 

version of Eq. (A2a). Translating x appropriately by <x | x> and normalizing numerically, we 

compare the SGS estimation of p(x,  | x) with the estimation of  p(x,  | x) from the raw histogram 

(Fig. 5).  We leave analytical verification of their equivalence to those with more patience and/or 

better symbolic manipulators than we have. (Such hardy souls would have to contend with Gamma 

functions of temporally-varying, complex argument in the normalization factor contributing to the 

left side of Eq. (A5)) 
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 654 

Fig. 1: Snapshots of conditional (forecast) probability density functions (pdfs) of ensemble 

forecasts starting from an initial condition x = 5 (solid vertical line), at lead times of  =  ( 

blue line)  ( red line) and  (black line).  Analytical stationary pdf is shown with black 

symbols, and its zero mean as a dotted vertical line.  (a) Top: Stochastically Generated Skew 

process. (b) Bottom: Ornstein-Uhlenbeck Gaussian process.  All distributions have been 

smoothed with a five-point smoother. Note that the conditional pdfs are skewed and heavy tailed 

in (a) but Gaussian in (b).  
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Fig. 2: Conditional moments as a function of forecast lead time.  Symbols: Using forecast values 

from the ensemble members.  Lines: Analytical values.  a)  Conditional mean for x = 1 (red lines), 

3 (black lines), and 5 (blue lines).  b) Same as a) but for conditional variance.  c) Conditional skew 

for x = 1, 3, and 5 (open symbols and solid lines) and for x = -1, -3, and -5 (solid symbols and 

dotted lines.  d) Same as c) but for conditional excess kurtosis.  
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Fig. 3: Sample conditional skew estimated from 500 100-member ensembles (red lines) and 250 672 

200-member ensembles (blue lines) for initial conditions xo = 1, 3, and 5.  Black dots: values 673 

estimated from expressions derived in Appendix A.  Lines: Median skew of the ensembles.  Dotted 674 

lines: 10% confidence levels based on number of 100-member (red) and 200-member (blue) 675 

ensembles. 676 
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Fig. 4:  Conditional SGS parameters as a function of forecast lead time for initial conditions x = 680 

1 (red line), 3 (black line), and 5 (blue line).  a) E given x, b) g given x.  c) b given x.  681 

Climatological values are E = 0.25, g = 0., and b = 1.75. 682 
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 686 

Fig. 5:  Conditional probability distribution functions (pdfs) at lead time  =  estimated using 

forecast values from the ensemble members (red lines) and derived analytically using the 

estimated conditional SGS parameters (black symbols).  Top row (a-c): For initial conditions x 

= 1, 3, and 5, on a linear scale. Bottom row (d-f): As in the top row, but on a logarithmic scale.  

 

  

687 

688 

689 

690 

691 

692 



 36 

 693 

 694 

 695 

Fig. 6:  Distributional bias D, i.e. conditional pdf mean minus the pdf mode, as a function of lead 

time for a) x = 1, b) x = 3, and c) x = 5. Solid lines: Eq. (3) median of 500 100-member ensembles 

(solid red lines) and of 250 200-member ensembles (solid blue lines). Dashed lines: 10% 

confidence levels.  Symbols: Values estimated from Fig. 5 and Fig. 2a. 
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 708 

Fig. 7: Conditional risk ratio R defined in Eq. (4) as a function of lead time for a) x = 1, b) x  = 

3, and c) x = 5.  Black circles: Values estimated from pdfs shown in Fig. 5. Approximations of R 

using only skew (Eq. 4) are shown for the 100-member (red lines) and 200-member (blue lines) 

ensemble sets.  Solid Lines: median approximate values of R. Dashed Lines: 10% confidence 

levels. Accurately estimated quantities (symbols) are well within the range of ensemble values; 

the 90% confidence levels are off the scale of the graphs. 

709 

710 

711 

712 

713 

714 


	A Mechanism for the Skew of Ensemble Forecasts
	Abstract
	Introduction
	Review of SGS dynamics
	Conditional SGS
	Discussion and Concluding Remarks
	Appendix A
	Figures



